If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2+80=18c
We move all terms to the left:
c^2+80-(18c)=0
a = 1; b = -18; c = +80;
Δ = b2-4ac
Δ = -182-4·1·80
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2}{2*1}=\frac{16}{2} =8 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2}{2*1}=\frac{20}{2} =10 $
| x+10+2+3+x=180 | | -5=6x-7x | | 3(x+7)+5x=51 | | 9x^2=12x=0 | | |5x-1|=|9x-2| | | y+9y+9=-21 | | -2x-3(x-5)-x=12+3 | | 12+x+56=0 | | 6m-15=8m+4 | | 9y+9=-21 | | -x^2+8x=x+10 | | 8c+74=-8c+74 | | 5y+95=75+15y | | 4w+200=1260 | | 2+1x=7/8-15 | | 3x-7+5x=51 | | 12.5-x=18.1 | | i=16i+5 | | 85+7.50g=130 | | 7.4x-2=-61.2 | | 130+0.70x=60+0.90x | | 5x-7=3 | | A=(π)(r)² | | 6x^2+3x=630 | | -2-4(2x-1)=(6-2x)3 | | 16+42(6-x)=15-4(x+2 | | 3x=-2x+-2 | | x2+16=36 | | 7.4x-2=61.2 | | 250t+350=3t+225 | | (x^2-1)+(5x+25)=90 | | 4/5p-1=-11 |